
PARALLEL PROPAGATION OF ERROR ON A GPU

c©PHILIPP DRIEGER 2012 – NOUMENTALIA.DE – DIGITAL ARTS

Abstract By serendipity this visual computing experiment led to a visualiza-
tion of colorful structures that evolve from the parallel propagation of errors
on a graphics processing unit (GPU). We wanted to transfer color values in
subsequent volume slices using an OpenCL kernel. Due to concurrent memory
access this transfer operation was erroneous and produced interesting visual
patterns in a point-based visualization. Meanwhile we fixed this ”error” with
another kernel but we wanted to share the initial results as a piece of visual
computing art. The visual patterns reveal the structure of block-wise kernel
execution on the GPU. In this short paper we briefly describe the setup of this
experiment and give an explanation of the observed effects.

Figure 1. Visualization of the experiment. The color values
are propagated from left to right through the volume. The
structure of the colors illustrate the kernel execution in blocks.

HTTP://WWW.NOUMENTALIA.DE/


2 c©PHILIPP DRIEGER 2012 – NOUMENTALIA.DE – DIGITAL ARTS

1. Experimental setup

The experimental setup is based on a cubic volume represented by a set (N3)
of points in R3 with N = 256 yielding 2563 = 16777216 points. The cube can
be interpreted as a set of N slices (S0, S1, . . . , SN ) of N2 points yielding 256
slices with each containing 2562 = 65536 points. Each point is represented by
a vector and a color value. Initially, the points are arranged in a regular grid.

Figure 2. Correct version of the kernel to propagate the color values.

It is intended to copy the points’ color values from one slice Sn−1 to the
next slice Sn by the use of a simple kernel program. As the kernel program is
executed in parallel on a GPU all points in a slice are processed in parallel.
All color values of the first slice S0 are bound to an simple sinus function
oscillating between black and white. After each update of S0 the kernel is
being executed over the given volume in order to copy one slice to the next,
passing the color values from one slice to the next. In each timestep all slices
should carry the values generated by the oscillator reaching from black to
white over the grayscale, looking like a ”zebra cube” as shown in figure 2.
Running this setup in a real-time 3D environment, we expect to observe this
effect as described. One side of the cube is oscillating from black to white
as expected, but surprisingly the color values of succeeding slices get more
and more distorted as shown in figure 1. Looking at the last slice Sn colorful

HTTP://WWW.NOUMENTALIA.DE/


PARALLEL PROPAGATION OF ERROR ON A GPU 3

structures appear after they changed from slice to slice after passing the cube.
Examining the structure of the colors could lead to the visual anticipation of
an explanation of this effect.

2. Explanation of effects

In this experiment the kernel is running in parallel over the given set of points
to propagate values from one slice to another. The execution of the kernel
on the used GPU (NVIDIA GeForce GTX 580) follows the SIMT paradigm
(Single Instruction, Multiple Threads). The kernel code is executed in warps
which are groups of 32 threads running in parallel. Kernel1 (see section 3.4)
has a race condition that leads to erroneous results due to concurrent opera-
tions. A thread can propagate the value from one slice to the next one prior
to the previous slice being computed. As every 32 threads operate in one
lock-step the race conditions will always occur the same for every warp. By
repeatedly running the kernel the errors spread from one slice to another. As
a result, the complete volume is filled with changing errors that lead to the
described effect.

As a side effect, the colorful structures reflects the SIMT execution and
therefore may illustrate the operation of a GPU. The colored structures clearly
show rectangular blocks of the same color and thus indicate blocks of the
same thread execution. Each colored block represents a warp in the volume.
Interestingly, this typical structure of kernel execution on a GPU reveal from
the propagation of the errors and their coloring.

3. Code snippets

The following code snippets have been used to achieve the described effects.
Both kernels operate on the given set of variables and use a common index
function to access points in the volume:

3.1. Code snippet: given variables.

// size of the cube:

VBOobject.NX = VBOobject.NY = VBOobject.NZ = 256;

// oscillator value:

float[] params = (float3)((Math.Sin(runner) + 1.0f) * 0.5f);

3.2. Code snippet: host-side kernel execution call.

// call for executing kernel1:

LayoutCQ.Execute(ComputationKernel, null, new long[3]

{ (long)VBOobject.NX, (long)VBOobject.NY, (long)VBOobject.NZ },

null, null);

// call for executing kernel2:

LayoutCQ.Execute(ComputationKernel, null, new long[2]

{ (long)VBOobject.NX, (long)VBOobject.NZ },

null, null);

3.3. Code snippet: index function used in both kernels.

int index(int ix, int iy, int iz, int nx, int ny) {

return (iz*nx*ny + iy*nx + ix);

}



4 c©PHILIPP DRIEGER 2012 – NOUMENTALIA.DE – DIGITAL ARTS

3.4. Code snippet 1: ”erroneous” kernel (correspond to figure 1).

__kernel void kernel1(

__global float * vec,// shared opengl vertex positions

__global uchar * col,// shared opengl color values

__global int * sizes,// size of the cube (256^3)

__global float * params // oscillator values

)

{

int ix = get_global_id(0);

int iy = get_global_id(1);

int iz = get_global_id(2);

int i = index(ix, iy, iz, sizes[0], sizes[1]);

if(iy<sizes[1]-1) {

int i1 = index(ix, iy+1, iz, sizes[0], sizes[1]);

col[i*3+0] = col[i1*3+0];

col[i*3+1] = col[i1*3+1];

col[i*3+2] = col[i1*3+2];

}

else {

col[i*3+0] = (uchar)(params[0]*255.0f);

col[i*3+1] = (uchar)(params[1]*255.0f);

col[i*3+2] = (uchar)(params[2]*255.0f);

}

}

3.5. Code snippet 2: ”correct” kernel (correspond to figure 2).

__kernel void kernel2(

__global float * vec,// shared opengl vertex positions

__global uchar * col,// shared opengl color values

__global int * sizes,// size of the cube (256^3)

__global float * params // oscillator values

)

{

int ix = get_global_id(0);

int iz = get_global_id(1);

for(int iy = 0; iy<sizes[1]; iy++) {

int i = index(ix, iy, iz, sizes[0], sizes[1]);

if(iy<sizes[1]-1) {

int i1 = index(ix, iy+1, iz, sizes[0], sizes[1]);

col[i*3+0] = col[i1*3+0];

col[i*3+1] = col[i1*3+1];

col[i*3+2] = col[i1*3+2];

}

else {

col[i*3+0] = (uchar)(params[0]*255.0f);

col[i*3+1] = (uchar)(params[1]*255.0f);

col[i*3+2] = (uchar)(params[2]*255.0f);

}

}

}

HTTP://WWW.NOUMENTALIA.DE/


PARALLEL PROPAGATION OF ERROR ON A GPU 5

4. Conclusion

We described the setup of this visual computing experiment and gave an ex-
planation of the effects which occurred by serendipity as a result of erroneous
operations. The visualization of the propagation of the error revealed the
typical block-wise structure of kernel executions on GPUs. As a side effect,
we can watch the GPU working to produce a volume of millions of errors by
propagation and recombination. You can watch this experiment running in
real time on YouTube: http://www.youtube.com/watch?v=15yMLU-jmyg

5. Acknowledgements

We thank Dr. Justin Luitjens (NVIDIA Cooperation) for technical discussions
and his profound explanations of the described effects.

This experiment has been contributed to http://www.visualcompute.com/ –
a space for visual computing arts.

For further information visit http://www.noumentalia.de/

c©Philipp Drieger 2012

http://www.youtube.com/watch?v=15yMLU-jmyg
http://www.visualcompute.com/
http://www.noumentalia.de/

	1. Experimental setup
	2. Explanation of effects
	3. Code snippets
	3.1. Code snippet: given variables
	3.2. Code snippet: host-side kernel execution call
	3.3. Code snippet: index function used in both kernels
	3.4. Code snippet 1: "erroneous" kernel (correspond to figure 1)
	3.5. Code snippet 2: "correct" kernel (correspond to figure 2)

	4. Conclusion
	5. Acknowledgements

